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to generate table 1 in the letter from Curtis and Sham
(2006)—the average values of the statistic and the2x

entropy-based statistic are much larger than that of the
likelihood-ratio–based heterogeneity test statistic. The
range of the haplotype frequencies leading to this result
is not large. Both figures 1 and 2 demonstrate that the
average values of the statistic and the entropy-based2x

statistic are similar and that, in most cases, the average
values of both the statistic and the entropy-based2x

statistic are smaller than that of the likelihood-ratio–
based heterogeneity test statistic.

If the covariance matrices of the moment estimates of
haplotype frequencies in the standard statistic and the2x

entropy-based statistic are replaced with the covariance
matrix of maximum-likelihood estimates of the haplo-
type frequencies, the average values of the three statistics
will be asymptotically the same. Therefore, if we were
to use the covariance matrix from the maximum-like-
lihood estimates, any differences among the three test
statistics would be, on average, small.

In summary, (1) we formulate the entropy-based sta-
tistic in terms of the estimated frequencies, not counts
as implemented in the simulation performed by Cur-
tis and Sham (2006); (2) the estimation error for hap-
lotype frequencies will have an impact on the test sta-
tistic under the null hypothesis, and the magnitude of
this effect will depend on the haplotype frequencies;
and (3) asymptotically, the impact of the haplotype-
frequency estimation error on the standard statistic2x

and the entropy-based statistic is smaller than the im-
pact on the likelihood-ratio–based heterogeneity test sta-
tistic. Therefore, the claim that type I error rates of the
heterogeneity test are always much smaller than those
of the standard statistic and the entropy-based statistic2x

is incorrect. The effects of the haplotype-frequency es-
timation errors on type I error rates of a test are complex
and should be investigated by both theoretical anal-
ysis and intensive simulation studies over large param-
eter spaces, not just over a small range of haplotype
frequencies.
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Estimated Haplotype Counts from Case-Control
Samples Cannot Be Treated as Observed Counts

To the Editor:
Although the entropy-based method described by Zhao
et al. (2005) provides a sensitive way to detect kinds of
departure from a random distribution of haplotype
counts between two data sets, we cannot see how it can
be applied in practice to case-control samples. This is
because tests that treat haplotype counts estimated from
unphased data as if they were actually observed hap-
lotypes are inherently anticonservative.

To illustrate in principle why this is, let us consider a
sample in which all subjects happen to be doubly het-
erozygous at two loci, with genotype Aa/Bb. The max-
imum-likelihood estimates for the haplotype frequencies
do not consist, as one might think intuitively, of each
possible haplotype having frequency 0.25. Instead, there
are two equally likely solutions: that haplotypes AB and
ab each occur with frequency 0.5 or that, conversely,
haplotypes Ab and aB both have frequency 0.5. (With
N subjects, the solution for four haplotypes has likeli-
hood 0.252N, whereas the solution for just two haplo-
types has likelihood 0.52N.) If a few other genotypes are
added to the data set, they will push the solution one
way or the other. For example, if the sample consists of
a mixture of cases and controls, and one case has ge-
notype AA/Bb and one control has genotype aa/Bb, then
the estimated haplotype frequencies will suggest that al-
most all cases have haplotypes AB and ab, whereas al-
most all controls have haplotypes Ab and aB. Although
such an extreme example would not occur in practice,
it is important to understand that maximum-likelihood
estimation of haplotype frequencies favors solutions
containing a small number of different haplotypes. This
implies that, when frequencies of multilocus haplotypes
are estimated separately in cases and controls, small ran-
dom effects can produce quite large, apparently notable
differences. In a real situation, one might estimate, for
instance, that a particular haplotype occurred in a small
percentage of cases but never in controls, leading to the
possibly erroneous deduction that this indicates the pres-
ence of a pathogenic mutation.

To determine whether haplotype frequencies differ sig-



730 The American Journal of Human Genetics Volume 78 April 2006 www.ajhg.org

Table 1

Number of Times Each Statistic Reaches a Given P Value
in 100,000 Simulations

P

REAL COUNTS

HETEROGENEITY

TEST

ESTIMATED

COUNTS

x2

Entropy
Test x2

Entropy
Test

.05 5,013 4,971 5,072 11,115 11,089

.01 970 968 1,034 3,678 3,678

.001 103 107 114 797 813

.0001 10 7 11 206 209

.00001 0 0 1 51 54

.000001 0 0 1 16 17

nificantly between cases and controls, the correct ap-
proach is to perform a heterogeneity test, in which one
calculates whether the overall likelihood is significantly
higher if different frequencies are allowed than if the
same frequencies apply to both groups. An incorrect
approach is to estimate haplotype counts by multiplying
the frequencies by twice the sample size and then to treat
these counts as if they were actually observed. The
counts may be compared using a Pearson x2 test on a
contingency table, by a permutation test as implemented
in the CLUMP program (Sham and Curtis 1995) or by
the newly described entropy method (Zhao et al. 2005).
In every case, the test based on estimated counts will be
anticonservative.

To illustrate that this is the case, we randomly gen-
erated case-control samples genotyped for two markers,
assuming that the population frequencies of the haplo-
types were the same for all subjects, under the assump-
tion of random mating. For each data set, we applied a
Pearson x2 test and the entropy test to the counts of the
simulated haplotypes. We then combined pairs of hap-
lotypes into two-locus genotypes, and we used the
GENECOUNTING program (Zhao et al. 2002) to ob-
tain estimated haplotype frequencies in the cases, con-
trols, and combined sample, along with the associated
likelihoods. We applied a heterogeneity test to these like-
lihoods and again applied the Pearson x2 and entropy
tests, this time to the estimated counts. Illustrative results
are given in table 1, for which the population frequencies
of the four haplotypes were set at 0.5, 0.2, 0.2, and 0.1,
and a sample size of 500 cases and 500 controls was
used. The Pearson x2 and entropy tests perform appro-
priately when applied to the actual haplotype counts, as
does the heterogeneity test using likelihoods based on
estimated frequencies. However, both of the tests that
use estimated counts are markedly anticonservative.

It is not appropriate to treat estimated haplotypes as
if they were observed, and tests that do so will produce
unacceptably high type I error rates. As we have said,
this will apply even if a permutation test is performed
on the estimated haplotypes—for example, by inputting
them into the CLUMP program (Sham and Curtis 1995).
However, a valid test can be devised if, instead, the orig-
inal data are repeatedly permuted and then, for each
permuted data set, haplotypes are estimated and a test
statistic is derived. The rank of the test statistic obtained
from the original data set can then be used to obtain an
empirical significance level (North et al. 2003), and such
an approach could be used for the entropy-based sta-
tistic. Without such a permutation procedure, we do not
see how the entropy test can be applied to case-control
data.
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Reply to Wirtenberger et al.

To the Editor:
Wirtenberger et al. (2006) analyzed the SNP content of
82 large (median length 157 kb) common copy-number
polymorphisms (CNPs), selected from the Database of
Genomic Variations, and determined the number of
SNPs included in the GeneChip Mapping 100K arrays
(Affymetrix). The data they presented showed that the
density of these SNPs within the CNPs is lower than
would be expected, with 52.4% of CNPs having no SNP
coverage (median length 120 kb) and only 8.5% having
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a SNP density equal to or higher than the overall mean
intermarker density for all SNPs on the array.

As suggested by Wirtenberger et al. (2006), the un-
derlying reason for this low density of Mapping 100K
SNPs in their selected CNPs is the selection criteria used
for SNPs on the array. The SNP selection criteria for the
Mapping 100K arrays select strongly but not completely
against SNPs in segmental duplications. The selection is
based on genotyping accuracy, Mendelian inheritance,
Hardy-Weinberg equilibrium, robustness, and repro-
ducibility—all of which are characteristics likely to give
poor results in genotyping SNPs that are located in
CNPs. Despite a selective bias against SNPs in CNPs,
some SNPs on the Mapping 100K arrays are able to
provide CNP information. For example, as Wirtenberger
et al. (2006) indicate, 14.6% of the CNP regions con-
tained more than four of the SNPs on the array.

Even with modifications in SNP selection, the current
algorithm implemented in CNAT (Affymetrix) would
still need to be modified, because it compares copy-
number data from the test sample with data from a large
pool of normal reference individuals, thereby decreasing
the likelihood of detecting CNPs. Future advances in
SNP selection, algorithm development, and density will
be required to identify frequent CNPs by use of SNP
arrays.

For investigation of CNPs, the advice of Wirtenberger
et al. (2006) to be aware of the limitation of Mapping
100K microarrays is sound. However, it is worth re-
membering that we (Slater et al. [2005]) describe their

use for detection of clinically significant chromosome
abnormalities. Exclusion of SNPs within common CNPs
is arguably an advantage in the diagnostic scenario when
virtually nothing is currently known of the clinical sig-
nificance of these CNPs.
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